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Abstract. Interface contract enforcement is intended to help scientists gain confidence in
software built from third-party components. Unfamiliar components present increased risk
of incorrect or unanticipated usage patterns and unexpected component behavior. Executable
interface contracts can address these issues but may incur unacceptable overhead. Research into
techniques for performance-driven contract enforcement pursues practical solutions to adapting
the level of contract enforcement to performance constraints.

1. Introduction

Many aspects of modern high-performance scientific computing challenge the levels of confidence
scientists and engineers have in software. Scientific applications continue to grow ever larger and
more complex due to the desire to simulate more complex phenomena through higher fidelity
models, evolving high-end computer architectures, and new algorithms to effectively utilize these
systems. These goals are of particular concern to applications under development by SciDAC
teams working in combustion [1], quantum chemistry [2], core-edge fusion modeling [3], and
accelerator modeling [4]. Executable interface contracts — in the form of concise, human-
readable, machine-processable specifications of behavioral constraints — can be used to gain
confidence in applications built from components.

Verification and validation (V&V) are terms for the general processes used to gain confidence
in software. Developers wverify that their software conforms to its specifications — in
terms of performing its computations. Researchers wvalidate results from their computational
models against appropriate external results through analytical models, experiments, and/or
observations. Scientific computing software environments traditionally provide few facilities for
aiding the V&V process, leading developers to build and rely on sets of tests. Thorough test
suites can be quite challenging and time consuming to develop. In practice, errors often arise
because developers are not able to anticipate every possible usage scenario and input data set.

Interface contracts offer a complementary approach to software verification. Current practice
in programming defines only the syntax of the interface through specifications of methods and
their parameters. Interface contracts provide a means of specifying some of the semantics
associated with component interfaces — in terms of the behaviors associated with the methods.
Contracts are formed by precondition, postcondition, and/or class invariant clauses belonging to
the interface specification, not the underlying implementation(s). Precondition clauses consist



of assertions on properties that must hold prior to method execution. Postcondition clauses
contain assertions that must hold upon method completion. Class invariants apply before
and after execution of all defined methods. Because this approach specifies properties of the
interface itself in a form amenable to automated enforcement, it allows every use of the interface
to be treated as a test case, thereby enabling dynamic validation of program behavior under
actual operating conditions. The result is improved testing, debugging, and runtime monitoring
of software quality, thereby providing scientific software developers with a powerful tool for
catching errors early and ensuring correct software usage during deployment.

Several techniques developed in the community focus on verifying computational results [5,
6, 7]. The most prominent approaches are Algorithm-Based Fault Tolerance (ABFT) and Result
Checking (RC). ABFT can take the form of any one of a number of techniques taking advantage
of the underlying mathematical computations to accumulate information about the correctness
of the results. One example is the use of a check sum. RC, on the other hand, is akin to
postconditions. It can involve a similar a posteriori computation used to compare with results.
Although both ABFT and RC are useful for gaining confidence in computational results, they
can be expensive and do not address the more general issue of using software correctly.

The enforcement of interface contracts also results in computational overhead. Verifying
that a scalar parameter is non-zero is a fast operation, but confirming a vector or matrix has
a non-negative norm scales with the size of the data. If the overhead of contract checking is
too high, enforcement will be limited to selected test cases. However, the greatest chance of
exposing errors and failures comes when the code is being used in “extreme” situations, such as
in the largest-scale simulation runs. These are also the conditions under which users tend to be
most sensitive to performance overheads. Standard practice in communities adopting contracts
is to eliminate all checks or manually disable at least the more complex or expensive ones.
Consequences of completely disabling contract enforcement range from spending days to weeks
reproducing and debugging errors to making decisions or reporting findings based on erroneous
information.

This research was undertaken as part of the SciDAC Center for Technology for Advanced
Scientific Component Software (TASCS) [8] as part of the Common Component Architecture
(CCA) [9] Forum’s pursuit of scientific software component technologies. Components are
encapsulated units of software interacting only through well-defined interfaces. The specification
of contracts is a first step in providing automated tools utilizing semantic information to increase
confidence in the software and resulting scientific data.

This paper highlights some of the work and findings to date. Results are presented from
experiments primarily using mesh components developed by the ITAPS [10] SciDAC project,
which is providing meshing and discretization tools for a variety of SciDAC applications. Mesh
management is a critical part of many scientific applications so the benefits of interface contracts
on mesh components can help improve the quality of many applications.

2. Interface Contracts in Babel

One of the key reasons executable interface contracts are not ubiquitous in this domain is
the inability to define them in common scientific programming languages. This research aims
to make contracts broadly available through the Babel language interoperability toolkit [11].
Babel provides middleware tailored for high-performance scientific programming for the following
languages: C, C++, Fortran, Java, and Python. Support for the specification and enforcement
of interface contracts has been added to the Babel toolkit. Contracts are specified through
the addition of clauses to the interfaces defined in the Scientific Interface Definition Language
(SIDL). Statements to enforce contracts are automatically generated by the Babel compiler
along with the language interoperability middleware. This approach allows interface contracts
to be defined once in the specification and applied to all associated implementations in any of



double norm(in double tol)
throws /* Exceptions */
sidl.PreViolation, NegativeValueException, sidl.PostViolation;

require  /* Precondition clause */
non_negative_tolerance: tol >= 0.0;

ensure /* Postcondition clause */
non_negative_result: result >= 0.0;
nearEqual(result, 0.0, tol) iff isZero(tol);

Figure 1. Vector norm contracts example.

the supported languages.

Figure 1 shows the SIDL specification of a norm method on a vector of doubles. In this case,
norm is a function taking tol as an argument and returning a double result. The precondition
clause consists of an assertion requiring the caller to pass a non-negative tolerance, tol, value.
If the preconditions are satisfied, all implementations of the method must then ensure the return
of a non-negative result within the specified tolerance of zero if-and-only-if the values of all
elements in the vector are zero (i.e., it is the zero vector).

Contract enforcement is automatically managed by the Babel runtime library. Built-in,
contract clause-specific exceptions are raised whenever a violation is detected. Since SIDL and
Babel are central to the widely-used reference implementation of the CCA, interface contracts
implemented in this manner can easily be used with CCA components.

3. Experiments

Research thus far focuses on identifying and developing interface contract enforcement sampling
techniques driven by execution time overhead limits [12, 13, 14, 15]. Experiments are conducted
to investigate the associated impacts. Data are collected to establish metrics for comparing
enforcement strategies. This section summarizes basic strategies and metrics used in this
research. Selected results and an overview of findings are also presented. More information
and details can be found in [14, 15].

3.1. Enforcement Policies

Interface contract enforcement policies reflect different strategies for checking contract clauses.
Although this research involves the implementation of many policies, this paper focuses on three:
Never, Always, and Adaptive fit. The first two policies — Never and Always — represent “all-
or-nothing” strategies providing baseline data. The Never policy disables interface contract
enforcement. The resulting execution times are used to establish enforcement overhead metrics.
The Always policy enables full contract enforcement. That is, all interface contracts encountered
during execution are checked. Consequently, the policy provides baselines for the total number
of checked (or enforced) contracts and detected violations for each trial. Adaptive fit is one
of three performance-driven sampling approaches. The policy checks contract clauses only if
the accumulated enforcement execution time estimate is within the user-specified limit of the
cumulative estimates outside the contracts.

3.2. Metrics
Three metrics are used to compare the effects of policies under study: enforcement overhead,
contracts enforced, and violations detected. Enforcement overhead is the percentage



Table 1. Summary of data collected in the latest study [14]. Experiments did not detect any

interface contract violations for the program labeled MA.

Software Mean (over all trials)
Component Enforcement | Contracts | Violations
Program (Source) Policy Overhead Enforced | Detected
A Simplicial Mesh Always 11% 100% 100%
(ITAPS) | Adaptive fit 7% 65% 67%
AA Simplicial Mesh Always 35% 100% 100%
(ITAPS) Adaptive fit 14% 58% 67%
MA Simplicial Mesh Always 27% 100% 0%
(ITAPS) Adaptive fit 11% 0.27% 0%
MT Volume Mesh Always 3% 100% 100%
(ITAPS) Adaptive fit 2% 0.35% 6%
VT Vector Always 9% 100% 100%
(Babel) Adaptive fit 0% 59% 64%

difference in the average execution time of a policy above the cost of conducting the experiment
without contract checking. That is, the overhead of a given policy is relative to the average
execution time for experiments using the Never policy. Contracts enforced is computed
based on the number checked for a policy relative to the total number checked using the Always
policy. Violations detected for a policy is also relative to the total number of violations
detected with the Always policy. Hence, the effects of sampling contracts are considered in
terms of execution time, contract checks, and contract clause violations.

3.3. Findings
Table 1 summarizes data obtained from experiments using the policies described in Section 3.1.
Experiments involve two mesh components from the ITAPS [10] SciDAC project and a vector
component from Babel [11]. Details, based on results by trial, can be found in [14]. Performance-
driven enforcement automatically adjusts the level of contract clause checking and tends to
have better overall control of enforcement overhead than alternatives strategies considered in
the study. As illustrated by program A, performance-driven enforcement is inappropriate for
programs exercising contracts composed solely of scalar checks. However, performance-driven
enforcement appears to be most suited to programs enforcing contract clauses whose checking
is fast-to-moderately expensive relative to the amount of time spent in component methods.
Analysis of data across three studies [15] further indicates the quality of execution time
estimates impacts checking and overhead. While coarse estimates enable performance-driven
policies to keep the overhead closer to the target level, they preclude the detection of violations
in trials of the first study. The most refined estimates in the final study enable performance-
driven policies to detect significant numbers of violations in roughly half of the trials.

4. Summary

The goal of this research is to help scientists gain confidence in software built from third-
party components using specialized interface contract enforcement strategies. The vision of
scientists developing insights into and predictions about physical phenomena through component
technologies is based on the idea of a repository containing multiple components conforming
to the same interface specification. Behavioral specifications in the form of executable
interface contracts are a well-known mechanism for ensuring compliance at runtime. However,



performance overhead concerns can be roadblocks to their adoption.

This research proposes the use and investigates the effects of performance-driven sampling as
a means of controlling the impact of interface contract enforcement on program execution time.
Target applications are those making numerous calls to methods with contracts that are also
expected to incur unacceptable overhead from enforcing all contracts. Experiments leveraging
two ITAPS mesh components and a Babel vector component are described. Findings indicate
performance-driven interface contract enforcement is a viable alternative to the traditional
strategy of disabling enforcement for applications exhibiting target characteristics. Programs
executing methods whose contracts contain assertions which are fast-to-moderate to check
relative to the time spent executing their methods appear to benefit most from performance-
driven strategies.

Future work includes further testing and enhancement of these capabilities in SciDAC
applications, as well as incorporating these techniques into tools under development by the
TASCS project for computational quality of service (CQoS) [16], or the automatic selection and
configuration of components to suit a particular computational purpose and environment.
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